

Die Stadt Heidelberg, die für dieses Bauvorhaben als Bauherr fungiert, hat seit 1992 mit der Energiekonzeption der Stadt Heidelberg den NiedrigenergieStandard für den Neubau städtischer Liegenschaften eingeführt. Im Rahmen des Heidelberger Klimaschutzprogramms spielen die energetische Sanierung des Gebäudebestandes und eine stetige Verbesserung des Energiestandards bei Sanierungen und im Neubau eine zentrale Rolle. So werden mit dem städtischen Förderprogramm zur rationellen Energieverwendung auch Passivhäuser gefördert. Ferner findet seit 2001 jährlich das Heidelberger Fachseminar Passivhäuser statt, eine gemeinsame Veranstaltung der Stadt Heidelberg und der Architektenkammer.

Aufgabenstellung und Städtebauliche Randbedingungen

Die Kurpfalzschule ist eine Grundschule in einem baugeschichtlich wertvollen Schulgebäude im historischen Ortskern des Stadtteiles Heidelberg-Kirchheim. Auf dem Schulgelände wurde in engen räumlichen Verhältnissen eine Sporthalle errichtet. Die Halle orientiert sich mit der Südfassade zum Schulhof und zum Schulgebäude und mit der Nordfassade zur Lochheimer Straße. Die Straße und die nähere Umgebung sind geprägt durch eine geschlossene, 2-geschossige Bebauung mit knapp 7 m Traufhöhe, die an einigen Stellen durch Mauern mit Tordurchfahrten unterbrochen ist. Der Blick aus dem Schulgebäude zeigt die Lochheimer

Straße mit der historischen Bebauung und den Schulpavillon, der abgerissen wurde, um dem Neubau der Turnhalle Platz zu machen. Die Sporthalle ist als kleinste Normhalle nach DIN 18032 ($15 \times 27 \mathrm{~m}$) mit reduziertem Nebenraumprogramm gebaut. Für den Schulsport ist aufgrund der Klassenzahl der Schule eine zeitweilige parallele Belegung durch zwei Schulklassen vorgesehen, wofür ein Trennvorhang eingebaut wurde. Die Halle wird für Schulsport und Vereinssport genutzt.
Der Baubeginn für die Halle erfolgte im Juni 2003. Die Fertigstellung war im April 2004.

Gebäudekonzeption

Der Baukörper der Halle wurde abgesenkt, damit der

Umkleidebereich unter der Schulhoffläche angeordnet werden konnte und somit weniger Hoffläche verbraucht wird. Auf diese Weise ist die Baumasse Orts-bild-verträglich in die Umgebung eingefügt. Entlang der Lochheimer Straße nimmt die Dachkante die Traufhöhe der 2-geschossigen Bebauung auf. Zum Schulhof hin ist das Dach abgestuft. Dort schließt sich als zweite Abstufung ein Vordach an, das einen offenen, überdachten Pausenbereich bildet.
Die Hauptfassaden der Sporthalle sind nach Norden und Süden orientiert, wobei die Nordfassade die Hauptbelichtungsfläche darstellt. Eingang und Foyer befindet sich an der Südwestecke der Halle. An der Ostseite bildet ein niedrigerer Baukörper mit Abstellraum und Not-

Oben:
Gesamtansicht Nordwest
Links:
Blick aus dem Dachgeschoss der Schule (nach Norden) auf den neuen Standort der Sporthalle.

[^0]

Oben: Lageplan
Unten: Schematischer Schnitt
(Dämmstoffstärken nicht maßstäblich).
ausgangstreppe eine Fuge zur Nachbarbebauung. Der Hallenraum hat eine lichte Höhe von 7 m . Zwei $2,5 \mathrm{~m}$ hohe Spannbeton-Fertigteilträger, im Abstand von 2,5 m parallel zur Hauptachse angeordnet, bilden das Primärtragwerk der Dachkonstruktion und setzen gestalterische Akzente. Die Lüftungstechnik ist flächensparend über dem Hallenraum in dem durch diese Träger gebildeten „Techniktrog" untergebracht.
Die sehr flach geneigten Pultdächer erhielten eine extensive Begrünung, die die Einbindung der Halle in das Ortsbild aus der Per-
spektive des Schulgebäudes unterstützt. Die Begrünung dient der Regenwasserrückhaltung, der ökologischen Aufwertung und der Verbesserung des Mikroklimas sowie auch umweltpädagogischen Zielen.
Die Halle weist folgende Flächen auf:

Nutzfläche	$726 \mathrm{~m}^{2}$
Funktionsfläche	$113 \mathrm{~m}^{2}$
Verkehrsfläche	$94 \mathrm{~m}^{2}$
Summe	$933 \mathrm{~m}^{2}$

Realisierung des
Passivhausstandards
Bereits im Planungsprozess wurde die Idee entwickelt,

Oben links: Innenansicht Sporthalle

Oben rechts: Grundriss Hallenebene

Unten links: Lüftungsschema

Unten rechts: Schema der Querlüftung
diese Halle im PassivhausStandard zu realisieren - als erste Sporthalle in BadenWürttemberg und als eine der ersten bundesweit. Aus dem Standort und der daraus entwickelten Bauweise ergaben sich besondere Schwierigkeiten für den Passivhausstandard:

- die Nord-Orientierung der Hauptfensterfläche und daraus resultierend geringe passive Solargewinne,
- die Teilverschattung der Südfassade durch das Hauptgebäude der Schule und
- der unterirdische Umkleidetrakt.
In Zusammenarbeit mit dem Passivhaus Institut Darmstadt wurde die Machbarkeit des Passivhaus-Standards unter diesen Randbedingungen untersucht. Es zeigte sich, dass der Zielwert des Heizwärmebedarfs von 15 $\mathrm{kWh} / \mathrm{m}^{2} \mathrm{a}$ mit vernünftigem Aufwand erreicht werden kann. Über die grundsätzliche Bedeutung des Modellprojektes einer PassivhausTurnhalle hinaus demonstriert dies den Entwicklungsstand der PassivhausBauweise: Passivhäuser sind inzwischen auch unter schwierigsten Bedingungen sinnvoll zu realisieren.
Das Energiekonzept umfasst

neben der Heizenergie auch die anderen energierelevanten Aspekte des Gebäudes, die Tageslichtnutzung, die effiziente Steuerung der künstlichen Beleuchtung, den sommerlichen Wärmeschutz, die effiziente und bedarfsgerechte Lüftung sowie die Warmwasserbereitung.

Die entscheidenden Punkte des Passivhaus-Konzeptes der Turnhalle Kurpfalzschule sind:

- Eine sehr gute und wärmebrückenfreie Wärmedämmung.
- 24 cm Dämmung aus extrudiertem Polystyrol (XPS) unter der Bodenplatte und den Streifenfundamenten,
- 24 cm Perimeterdämmung aus extrudiertem Polystyrol auf den Außenwänden gegen das Erdreich,
- 30 cm druckfeste Däm-
mung aus extrudiertem Polystyrol auf dem Umkleidebereich unter der Hoffläche, die für Feuerwehrfahrzeuge befahrbar sein muss,
- 30 cm Wärmedämmverbundsystem aus expandiertem Polystyrol (EPS) auf den Außenwänden,
- 40 cm Dachdämmung, voraussichtlich als Mine-ralfaser-Zwischenspar-ren-Dämmung zwischen Holzleichtbauträgern (TJITräger),
- Verglasung mit 3-Schei-ben-Wärmeschutzverglasung mit U-Wert 0,7 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ und thermisch getrenntem Randverbund und
- Verwendung gedämmter Passivhaus-geeigneter Fassaden- und Fensterprofile.
- Sehr luftdichte Konstruktionen und Qualitätssicherung durch einen Blo-wer-Door-Test.

[^1]| Das Planungsteam | |
| :--- | :--- |
| Bauherr: | Stadt Heidelberg, vertr. durch den
 Ersten Bürgermeister, Prof. Dr. Raban von
 der Malsburg |
| Projektsteuerung: | Stadt Heidelberg, Gebäudemanagement |
| Architekten: | ap88 Architektenpartnerschaft
 Bellm-Löffel-Lubs-Trager, Heidelberg |
| Konzeption Energie | Stadt Heidelberg, Amt für Umweltschutz, |
| und Umwelt: | Energie und Gesundheitsförderung |
| Gebäudetechnik | PSP Planungsbüro Schmitt \& Partner, |
| HLS: | Mauer |
| Gebäudetechnik | WII Ingenieurbüro Vlasak und Wolf,
 Elektro: |
| Heidelberg | |
| Tragwerksplanung: | Ingenieurbüro Hacker, Heidelberg |
| Bauphysik: | Passivhaus-Institut, Darmstadt |

- Effiziente Lüftungsanlagen mit einem Wärmerückgewinnungsgrad von 85%.
- Alle technischen Anlagen werden innerhalb der wärmegedämmten Gebäudehülle installiert, so dass ihre Abwärme zur Gebäudebeheizung beiträgt.

Optimierung der Lüftungs-

 auslegung und -regelung zur effizienten Wärmeund Stromnutzung:- Statt wie noch vielfach üblich Umkleiden und Duschräume jeweils separat mit Zuluft und Abluft auszustatten bilden beide einen Lüftungsverbund. In den Umkleiden wird ausschließlich Zuluft eingeblasen. Diese strömt über in die Duschräume und wird dort als Abluft abgesaugt. Dadurch können die Volumenströme und damit der Wärmebedarf für die Nachheizung der Frischluft und der Strombedarf der Ventilatoren reduziert werden.
- Der Betrieb der Lüftung für die Duschen und Umkleiden wird feuchtabhängig geregelt. Da im Schulbetrieb fast nie geduscht wird und auch
beim Vereinssport die Duschen sehr unterschiedlich intensiv genutzt werden, liegt hierin ein großes Einsparpotential im Vergleich zu einer reinen Zeit- oder Anwesenheitssteuerung des Lüftungsbetriebes.
- Der Betrieb der Lüftung für die Halle erfolgt luftqualitätsabhängig, geregelt über den CO_{2}-Gehalt der Luft. Hierdurch erfolgt eine automatische Anpassung der Luftmengen an die Nutzungszeiten und die Anzahl der Sportler.
- Im Sommerbetrieb bleibt die Lüftungsanlage für die Halle abgeschaltet - die Anlage für die unterirdischen Duschen und Umkleiden muss auch im Sommer betrieben werden - und die Frischluftversorgung erfolgt über Querlüftung durch motorisch bediente Lüftungsflügel in Nord- und Südfassade.

Optimierte Gebäudehülle und Lüftungstechnik ermöglichen eine vereinfachte Wärmeversorgung und -verteilung:

- Durch den geringen Heizleistungsbedarf kann auf
den ursprünglich geplanten Erdgasanschluss und -kessel verzichtet und die Halle über die vorhandene Erdgas-Brennwertkesselanlage des Schulgebäudes mitversorgt werden.
- Alle ursprünglich vorgesehenen statischen Heizflächen, Radiatoren in den Umkleide- und Duschräumen und im Foyer sowie Fußbodenheizung in der Halle, können entfallen. Die Zu führung des geringen verbleibenden Heizwärmebedarfes erfolgt ausschließlich über die hygienisch erforderliche Frischluftmenge, ohne energetisch aufwändige Umluft. Damit werden zugleich die Wärmeverteilung vereinfacht und die
zugehörigen Regeleinrichtungen eingespart. Diese Einsparungen bei der Lüftungs- und Heizungstechnik gleichen einen relevanten Teil der Mehrkosten der verbesserten Wärmedämmung aus.

Sommerlicher
 Wärmeschutz

Während die nach Norden orientierte Hauptfensterfläche im Winter nur geringe passive solare Wärmegewinne liefert ist sie für den sommerlichen Wärmeschutz eine sehr gute Voraussetzung. An der Nordfassade konnte auf einen Sonnenschutz komplett verzichtet werden. Dagegen musste die kleinere Südfassade ein Verschattungssystem als

Wir stellen aus: Passivhaustagung Ludwigshafen 29.+30.4.05

Hitze- und als Blendschutz erhalten.
Den letzten Baustein des effektiven sommerlichen Wärmeschutzes stellt die Querlüftung zwischen Nord- und Südfassade über die motorisch zu öffnenden Lüftungsflügel in Verbindung mit einer DDC-Regelung dar. Damit kann überschüssige Wärme durch freie Nachtkühlung weggelüftet werden. Die unverkleidet bleibenden Massivbauteile aus Stahlbeton und Mauerwerk dienen dabei als Speichermasse.

Solare
 Warmwasserbereitung

Zur Warmwasserbereitung wurde auf dem Dach eine thermische Solaranlage mit Flachkollektoren installiert, die so ausgelegt ist, dass sie den zu erwartenden Wärmebedarf zur Warmwasserbereitung und die Zirkulationsverluste im Sommer vollständig deckt, außer bei Bedarfsspitzen durch Wett-kämpfe-o. ä.. Entscheidend für den Nutzen der Solaranlage ist, dass im Sommerbe-

Oben:
Tageslichtnutzung von Nordund Südfassade

Unten:

Innenansicht Flur
trieb die Heizanlage - das heißt Heizkessel, Hauptpumpe und Ladepumpe der Warmwasserbereitung komplett abgeschaltet wird und dadurch die Betriebsbereitschaftsverluste minimiert werden. Die Heizanlage darf erst dann wieder automatisch in Betrieb gehen, wenn der Speicher weitgehend entladen und ein Bedarf vorhanden ist.

Transparenz und Tageslichtnutzung

Die gegenüberliegenden Glasfassaden an Nord- und Südseite verleihen dem Gebäude Transparenz und bilden damit einen weiteren Mosaikstein der Einfügung in die Umgebungsbebauung. Während ein direkter Durchblick zum Schulhof gewollt ist, soll der direkte Einblick von der Straßenseite hinunter in die Sporthalle verhindert werden. Hierzu wurden die äußeren und die inneren Scheiben der Dreifachverglasung mit 4 cm hohen transluzenten Streifen horizontal bedruckt, jeweils mit einem Abstand von 3 cm untereinander. Durch den Abstand der äußeren Scheibe von der inneren (ca, 5 cm) ergibt sich horizontal Transparenz (Durchblick zum Hof), nach schräg unten in den Hallenraum jedoch ein effektiver Sicht-

schutz.
Mit den Zielen einer hellen Raumwirkung, blendfreier Beleuchtung und eines minimalen Energiebedarfes für die künstliche Beleuchtung wurde die Tageslichtnutzung optimiert. Wichtig sind dabei sowohl ein hoher Tageslichtquotient als auch eine gleichmäßige Helligkeitsverteilung des Tageslichtes. Die zweiseitige Belichtung von Norden und Süden stellt eine gute Basis für eine gleichmäßige Intensitätsverteilung dar. Die Hauptfassade ermöglich von Norden her eine blendfreie Belichtung.
Tageslichtsimulationen des Passivhaus-Institutes bestätigten die gute Beleuchtungsstärke mit einem mittleren Tageslichtquotienten von $7,1 \%$ in der Ausgangsvariante gegenüber einer Mindestanforderung von 4\% und zeigten zugleich Verbesserungsmöglichkeiten bei der Intensitätsverteilung auf. In der Ausgangsvariante war der Tageslichtquotient an der Südseite der Halle durch das vorgelagerte Vordach reduziert, während eine im Norden zunächst vorgesehene Dachverglasung dort zu einem sehr hohen Tageslichtangebot führte. In der optimierten Variante wurde das Vordach auf der Südseite um einen Meter von der Fassade abgerückt. Weiterhin wurde
die Dachverglasung an der Nordseite durch ein opakes Dach ersetzt. Der mittlere Tageslichtquotient verringert sich geringfügig auf $6,7 \%$, aber die Gleichförmigkeit der Intensitätsverteilung wird stark verbessert.
Mit der optimierten Variante wird zugleich der Heizwärmebedarf weiter reduziert und der sommerliche Wärmeschutz verbessert.
Durch sensorgeführte Lichtregelung in Verbindung mit dimmbaren elektronischen Vorschaltgeräten wird die künstliche Beleuchtungsstärke dem momentanen Tageslichtangebot angepasst. Mittels Anwesenheitssensoren stellt die Lichtregelanlage fest, wenn keine Personen in der Halle sind und schaltet das Licht aus, falls die Nutzer dies vergessen haben. In den Umkleiden, Duschen und Nebenräumen, die kein Tageslicht erhalten, wird die Beleuchtung vollständig durch Anwesenheitssensoren gesteuert.

Quellen:

Kah, Oliver et al., Passivhaus Institut Dr. Feist, Projektbegleitende Analysen zur Entwicklung eines Passivhaus-Energiekonzeptes für die Turnhalle Kurpfalzschule, 2003

Ralf Bermich

Dipl.-Phys.

Patrick Lubs

Freier Architekt (ap88)

[^0]: 10 EnergieEffizientes Baven 1/2005

[^1]: 12 EnergieEffizientes Bauen 1/2005

